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Abstract 

The paper studies the possibility of ‘targeting’ or ‘controlling’ a chaotic tatonnement by suitable 
perturbations of the law of motion. The analysis is in the context of a parametric class of exchange 
economies which are shown to constitute the logistic family of dynamical systems under the 
tatonnement process. Computer simulations suggest that the control method is effective in attaining 
neighborhoods of competitive equilibria for many members of this class of economies in a 
decentralized manner. 0 1998 Elsevier Science B.V. 
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1. Introduction 

The mathematical model of the Walrasian tatonnement formalized by Samuelson has 
been extensively analyzed by a number of authors (see Arrow and Hahn (1971) for a 
detailed discussion). An interesting feature of the process, not always duly emphasized, is 
that it is an informationally decentralized way of obtaining market clearing prices. In the 

1960s the examples provided by Scarf (1960) and David Gale (1963) showed that even 
with a small number of goods and agents, there could be cycles and local instability when 
strong income effects were present. Subsequently, Saari (1985), Day and Pianigiani 
(1991) and Bala and Majumdar (1992) demonstrated that the tatonnement could exhibit 
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‘chaotic’ behavior in a simple discrete time formulation with two agents and two 
commodities. In Section 3 of this paper, we identify a class of economies (again, with 

two goods and two agents) where the discrete time tatonnement process is given by the 

logistic family of maps P(,+~) = I_LP~( 1 - p,); thus the dynamic behavior displays the full 
range of complexities shown by this well-studied family. This example is of independent 

pedagogical interest. 
In the rest of the paper, we turn to the possibility of ‘targeting’ or ‘controlling’ a 

chaotic tatonnement by an appropriate perturbation of the law of motion in order to attain 

specific states; for example, fixed points or economic equilibria. The idea of such control 

has been explored in the physical and biological sciences (see Shinbrot et al. (1992a, 
1992b, 1993)). Informally stated, the notion underlying the possibility of control is 
this: consider a dynamical system (X, h) where X is the state space and h is the law of 

motion. The law of motion h is assumed to be chaotic according to some definition. 

Suppose that from an initial state x, E X a ‘controller’ can ‘steer’ the system in the first 

period to any element of a subset C(x,,) of the state space X. Subsequently, the system is 
allowed to evolve under the original law of motion h. If the state of the system in some 
finite period T is in a prescribed neighborhood of a target state x*, the controller has 
achieved his objective and stops the process. Unlike papers in the natural and biological 
sciences, our formulation of the control problem (described in Section 2) does not involve 
repeated interventions by a controller, but only a ‘one-shot’ one of the kind described 
above. 

In Section 4, we employ the control technique to the chaotic tatonnement obtained in 
Section 3. As with the original tatonnement, the control process is informationally 
decentralized: an economic interpretation of it is that the controller (or auctioneer) 
initially announces a set of prices rather than a single one. Based upon the excess 
demands reported by the agents, a new set of prices is generated, with the process 

continuing until an ‘E-equilibrium’ price is attained, at which point the process 
terminates. We report upon some computer experiments which show that the controller is 
able to attain the &-equilibrium price quite rapidly for a number of economies where the 
tatonnement displays chaos. 

2. Targeting: An analytical result 

Consider a dynamical system (X,/r) where X is a non-degenerate interval of the real line 
and h is a continuous map from X to X. A point x E X is afixedpoint of h if x=/z(x); x is a 
periodic point of period k>l if x=/&x) and k is the smallest positive integer with this 
property. In particular, a fixed point is a periodic point of period one. The pair (X,/r) is a 
dynamical system where X is the state space and h is the law of motion. Now, h is said to 
be topologically transitive if for any pair of (nonempty) open intervals U and V in X there 
is some j>O such that ti( U) n V # 0. The relationship between topological transitivity 
and chaos is discussed in Devaney (1989) Banks et al. (1992) and Block and Coppel 
(1992). In our case since X is an interval, h is topologically transitive if and only if h is 
chaotic in the sense of Devaney. In particular, we know that if X=[O,l], and 
h(x)=4x(l-x) then h is chaotic in the sense of Devaney (1989, page 50, Example 8.9). 
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Suppose from an initial state x, that we wish to ‘attain’ or, at least, visit a neighborhood 

of a ‘target’ state x*. If the dynamical system (X,h) is chaotic, it is not easy to verify 
whether this is possible in a finite number of periods. Now suppose that a ‘controller’ has 
the ability to achieve ‘small’ perturbations of the laws of motion h; under what conditions 

can we say that, if we choose an arbitrarily small open neighborhood N,* c X containing 

x*, the trajectory from an initial x, will visit N,: (i.e. Q(x,) will be in N,. for a finitej)? In 
an economic context, repeated and fairly ‘refined’ interventions may not be feasible. So 
we consider the possibility of a ‘one-shot intervention.’ Let C be a class of functions from 

X to X containing a particular law of motion h, from which the controller can select in the 
initial period. After choosing some 4 from C, the system is ‘left alone’ to be governed by 
the law of motion h and stopped, if the system attains a preassigned neighborhood in 
finite time; in other words, from any x, E X we consider a sequence of states evolving 
according to the following rule: 

i, = &a), /r E c 

x2 = h($) 
(1) . . . 

xt+l = h(q), forallt > 2 

Then our problem of ‘visiting’ N,. is reduced to: does there exist some h E C such that 

{xa,.?,,x2 ,... } b d o tame according to Eq. (1) has the property that xr E N,. for some 
finite T? To answer this question, consider the set 

C(x0) = {Y E X I Y = g(xo),g E Cl. (2) 

The set C(x,) is the set of all possible states that the controller can attain in period one 
from the initial state x0. The question of ‘visiting’ any open set containing the target state 
x* in finite time is made precise in the following: 

Proposition 1 Suppose X is a non-degenerate interval on the real line and that (a) h: 

X -+ X is a continuous map which is topologically transitive and (b) C(x,) contains a 

nonempty open subset L(x,) of X. Given an open interval N,. containing a target state x*, 

there exists h E C and an integer r>O such that hT (&x0)) lies in N,*. 

Proof: Since h is topologically transitive and L(x,) is open, there is some T>O such that 
hT(L(xO)) fl N,* # 8 . Let f EL(x,) be such that hT(R E NY. Since L(x,) c C(xO) by 
assumption, .k = i(x,) for some h E C. The result follows. 

3. Chaotic tatonnement 

Recall that in the Walras-Samuelson tatonnement process the auctioneer announces an 
initial price and then adjusts the price upward or downward based upon the agents’ 
reported excess demands, with the process continuing in the same manner until an 
equilibrium is reached. To underscore the economic relevance of the controlled 
tatonnement process introduced in the Section 4, we emphasize that the tatonnement is 
an informationally decentralized method by which a competitive equilibrium price may 
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be attained. Note that at any point of time, the auctioneer neither knows the excess 

demand functions nor the individual characteristics of the agents who generate their 

excess demand functions, that is, the utility functions and endowments of the agents. (If 
he did, he could directly solve for the competitive equilibrium price). Likewise, no agent 
knows the characteristics of other agents or even the price adjustment rule followed by 

the auctioneer. Thus the tatonnement is entirely anonymous (formally, the mechanism is 
‘privacy-preserving’ in the sense of Hurwicz (1986)). 

In this section we show that when the discrete-time tatonnement is applied to a 

parametric family of two-good (x1 and x2), two-consumer exchange economies, the 
induced dynamical system constitutes the logistic family 

Pt+1 = PPr(l -Pt). (3) 

where p, E [0, l] is the price of good 1 in period t and the price of good 2 is given by 1. As 

the logistic family exhibits an enormous variety of complicated behavior, this example is 
of independent pedagogical interest. 

We now give details of the construction. For this class of economies, the rate of price 
adjustment in the tatonnement is fixed. The consumers have simple preferences give by 
the Leontief type (for the first consumer) and the quasi-linear type (for the other 
consumer). The parameter p relates to the preferences of the two consumers. Consumer 1 

has the utility function 

U’(XI ,x2) = minCf(xr), 0x2). (4) 

where 

(5) 

and a E [l/3, l/2] is a preference parameter. Furthermore, the consumer’s initial 
endowment is w’ = (1,O). His demand function for xl is then given by: 

x1(P) = 
{ 

72, 
if 0 <p 5 1/(2a); 
if p > 1/(2a). (6) 

where p denotes the price of good 1. This may be shown as follows: we consider the two 
equations 

ox2 =x1 -x;, px1 +x2 =p. (7) 

which hold when p E [0,1/(2a)]. Substituting for x2 we get the quadratic 

XT-(ctp+1)x,+czp=0. 

which has the solutions cxp and 1. Thus, x,(p)=cxp and x&)=p(l-ap)>O constitutes a 
solution to the eqautions in E 

9 
. (7) when p E [0,1/(2a)]. Note also that x,(p)=ap< 112 so 

that f(x~ (p)) = XI Cp) - XI Gn) and 

m2(P) =f(x1(P)), PXl(P) +x2(P) = P. (‘3) 

Finally, for p > 1/(2a), we have x,(p) = l/2 and x2@) = U(4a). 



V Bala et al./J. of Economic Behavior & Org. 33 (1998) 411420 415 

The utility function of consumer 2 is of the quasi-linear form: 

u2(x142) =‘+I) +x2. (9) 

where 

&I) = L ;P”‘($)(l - xr)3’2, if 0 5 xl 5 1; 

if xr > 1. 
(10) 

where /3 E [3/2,2]. Furthermore, his initial endowment is w2=(0,1). The consumer’s 

demand for xl can then be computed as 

(11) 

This is shown as follows: consider the equations 

g/(x,) = p, pxr +x2 = 1. (12) 

The solution to Eq. (12) also solves the consumer’s utility maximization problem. For 

XI E [O,l], we have: 

g’(x,) = -p2 00 ; ; (1 _q)‘/2(-1) = p”2(1 -x,)1’2. (13) 

Putting g’(xr) = p we obtain x:(p) = 1 - (p2/p). For p E [O,l], (using PLO), we have 
4(p) 2 0, and x$b) = 1 - p4(p) = 1 - p + p3//3 which is also non-negative. Thus, for 
p E 10, 11, 4 (p) = 1 - (p2/p) and xi Cp) = 1 - p + p3/,d solves consumer 2’s maximiza- 
tion problem; in particular, Eq. (11) holds for p E [O,l]. 

The main idea employed here is that since consumer 1 is necessarily a seller of good 1, 
his preferences can be made to lead to an increase in the demand for xl with an increase 
in the price of xl by allowing low substitution possibilities. The Leontief-type (but 
without fixed coefficients) preferences that we use have the further advantage that the 
demand for x1 is in fact linear in p. Consumer 2 is necessarily a buyer of good 1 and his 

demand for xr will decrease in p in the usual case. By choosing his utility function of the 
particular quasi-linear type that we use, we ensure that for small p it decreases in p at a 
very low rate and for p close to 1 it decreases in p at a relatively high rate (i.e. as the 

square of the price). Adding the two effects and subtracting the total supply of 1, we will 
generate the inverted U-shaped excess demand function. The quadratic family can now be 

generated by fixing 8 as high enough and relating the taste parameter or and ,0 
appropriately. Formally, from Eqs. (6) and (11) we get the excess demand for good 1 as: 

The discrete-time tatonnement process has the form 

Pt+l = Pr + @z(Pt) (1% 

where pt is the price of good 1 at time t and 8>0 is a parameter depending upon the 
market rate of adjustment of the price. We shall apply this dynamic to a class of 
economies parameterized by a single parameter <. The market rate of adjustment will be 
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fixed at 0=6. Regarding the taste parameters, cr and [J, the choices will be as follows: for 
any < E [l/3,1/2], we shall set 

(16) 

Note that cr E [l/3,1/2] and p E [3/2,2]. Thus the excess demand for the economy < is 

and, setting 19=6, the tatonnement equation for the economy 6 is 

(17) 

(18) 

Finally, denoting (1+6<) by p we get the logistic equation: 

Pt+i = h,L(pJ = PPt(1 -Pr) (19) 

as the tatonnement dynamic. Furthermore, as < E [l/3,1/2], we get p E [3,4]. Now all the 
analysis developed for the quadratic family can be applied to this family of economies 
indexed by the parameter < (or equivalently, p). 

4. Computer experiments 

In this section, we conduct computer simulations on the class of economies considered 
in Section 3. We can employ the technique of Section 2 to locate a neighborhood of an 
interior fixed point of h, which corresponds to a competitive equilibrium for the 
underlying economy, whenever the tatonnement process for the economy exhibits chaos. 

We start with the system pt+i = h4(Pt) = 4p,( 1 - p,). Fix ,G E (3,4), and let K denote the 
interval [& 41. Denote C as the set of functions {hp] for p E K. For any p0 E (0,l) we 
consider the set 

C(P”) = {Y E LO, 11 I Y = h,‘(&J),P E K]. (20) 

Clearly, since p0 is strictly between 0 and 1, the set C(pO) c [O,l] contains an open 
interval Up,) of values by the intermediate value theorem. Thus, by topological 
transitivity of hd, the sequence of iterates of h4 of L(p,) will eventually approach any 
neighborhood of a fixed point p* of h4. 

An economic interpretation of the above procedure is that the ‘auctioneer,’ rather than 
just choosing an initial price, chooses a ‘large’ number of initial prices, and for each of 
those prices, obtains the value of excess demand from the agents in the economy. From 
this a new set of possible prices is computed by applying the tatonnement individually to 
each of the original prices. In subsequent periods this procedure is repeated until for some 
price in the set of prices, the absolute value of excess demand is at most t, where ~-0 has 
been previously fixed. (We shall refer to such a price as an c-equilibrium price). If the 
tatonnement applied to the excess demand is topologically transitive, then within finite 
time the above procedure will generate an e-equilibrium price. We emphasize that just 
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Fig. 1. Controlling chaos (p4) 

50 

like the original tatonnement process, this procedure is also informationally decen- 
tralized, in the sense discussed in Section 3. 

To implement the method on a corn uter, 
B 

we need to discretize the space. 
Consequently, we choose Q points {pi}i,i in K=[,!&4], where Q is ‘large.’ The 
parameter /Li is referred to as a control. For each control CLi, we compute fi{ = h, (PC,) , 
and then pi = hd(li’,), pi = h4f’$!) and so on. For fixed ~0 we check if 

I UP;) -Pf IL 0 c ( recall from Section 3 that 0=6 is the market adjustment rate). If 
this inequality is met, the absolute value of excess demand for the economy 
corresponding to h4 is at most E. 

In our computations, we have chosen a tolerance of ~=0.001, Q=50 equally spaced 
points from the interval [3.9,4] and a pa at random from the [O,l] interval. For each pi in 
the grid, we stop the iterations after at most n periods (here n=lOO) if no ‘E fixed point’ 

has been reached. Fig. 1 summarizes the results of a simulation of the control method for 
the dynamical system hq. The initial price is po=0.562 approximately, and the control 
value is cLi=3.96. In order to better indicate the quality of the targeting process, we have 
drawn a horizontal line at the equilibrium price p*=O.75. As can be seen from the figure, 
an E-equilibrium price is attained at t=57. Similar results were obtained for a number of 
other values of the control pui. 

While the method seems to work, we note one difficulty with this approach: it is 
possible that the process may come close to the fixed point of h4 at p=O which is 
economically inappropriate. In fact, a neighborhood around p=O was found far more 
frequently in our simulations. Fig. 2 illustrates one such instance, for the control value 
pi=3.95. Here the process has stopped at t=35 where the price is very close to the fixed 
point at 0. We note that this difficulty is somewhat special to the case /.~=4; its occurrence 
can be ruled out when ~<4. The formal argument is long and tedious and the interested 

reader is referred to Bala et al. (1995). 
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Fig. 3. Controlling chaos 

Next, we report our computer simulations for b = 3.95. The interior fixed point of h, is 
approximately at p*=O.746835. A total of 50 grid points between 3.9 and 4 were chosen 
along with an initial value p0 of approximately 0.5 174. The value of ~=0.001 is as before. 
Fig. 3 shows the control process when the first period control value is ~i=3.918. As 
before, a horizontal line has been drawn at the equilibrium value. As can be seen, the 
process halts at t=41 within the c-tolerance of p*. Fig. 4 shows another simulation when 
~;=3.964. The system stops at t=78 within 0.001 of p*. We also note that in all the 
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simulations, the system never approached the fixed point around 0, as will always be the 
case when fi < 4. 

5. Conclusions 

It is well known that the tatonnement process applied to even simple economies with 
small numbers of agents and commodities can exhibit chaos. In this paper, we 
demonstrate how a Walrasian auctioneer can ‘control’ a chaotic tatonnement process to 
lead to an arbitrarily small neighborhood of a competitive equilibrium price. We begin by 
constructing a parametric class of exchange economies which yield the logistic family of 
dynamical systems when the tatonnement is applied to them. Our computer experiments 
suggest that the control method described in this paper works quite efficiently to locate a 

given neighborhood of competitive equilibrium for a large subset of the parametric class 
of economies. 
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